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for Brownian particles near an absorbing wall 
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Abstract. Amethod forsolving kineticboundarylayerproblemsforthe( ID) Klein-Kramers 
equation. the kinetic equation for Brownian particles, was proposed a few years ago by 
Marshall and Watson for the special ease of particles moving under the influence of a 
constant or zero external force. In this paper we apply this method to a number of classical 
stationary boundary layer problems for completely or partially absorbing walls. These are 
the Milne problem, in which a current Rows towards the wall from infinity, and the albedo 
problem, in which particles are injected into the system at the wall with a prescribed 
velocity distribution. The solutions are known to be non-analytic at the wall for zero normal 
velocity; we pay particular attention to the nature of this singularity for several special 
cases. The results are compared with results obtained by approximate methods. The latier 
typically provide quicker and more accurate results for the distribution away from the 
singularity, due to the slow convergence of the series encountered in the Marshall-Watson 
approach. The latter is clearly superior. however, for determining the nature of the 
singularity and for calculating distribution functions and density profiles in its vicinity. 

1. Introduction and survey 

A few year ago, Marshall and Watson [1-3] used Wiener-Hopf techniques to treat 
the kinetic boundary layer for the I D  Klein-Kramers equation [4, 51, the kinetic 
equation for non-interacting Brownian particles diffusing in a background medium, 
for the special case of a completely absorbing wall and a spatially constant external 
force. Until then the only exactly solved boundary layer problems concerned variants 
of the linear BGK equation [6 ,7  and references therein], in which the collision operator 
is replaced by a projection operator (or a finite sum of projection operators, all but 
one of finite-dimensional range). The solution by Marshall and Watson is therefore 
of great interest, both in its own right and as a test case for approximate methods 
developed to treat kinetic boundary layer problems for more general collision operators 
[8, 9 and references therein]. Thus it appears worthwhile to explore the content of this 
solution in somewhat more detail than was done in [I-31.  

In contrast to the BCK case, boundary layer problems in the Klein-Kramers case 
are not reduced to quadratures. Instead, most quantities of interest are expressed as 
infinite series that in general converge rather slowly. This slow convergence is related 
[lo] to a non-analyticity in the velocity distribution at the wall at zero normal velocity. 
The nature of this singularity had been determined before [IO, I I]?, but its analysis 
is made much easier by the techniques developed by Marshall and Watson [1-3]. Since 

t Some of the results of[10] were obtained independently by Mayya [121. 
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results about the behaviour of the distribution function away from the non-analytic 
point can usually be obtained more economically and more accurately by variants of 
the moment method [8, 131, we shall concentrate in this paper on results concerning 
the distribution function for various boundary layer problems in the neighbourhood 
of the singularity; a more complete discussion of the results obtainable by analysis of 
the Marshall-Watson solution is given elsewhere [14]. 

In section 2 we formulate the basic equations and define the fundamental boundary 
layer problems, the Milne and the albedo problem. In addition we discuss two systems 
of solutions of the equation, the boundary layer eigenfunctions first introduced by 
Pagani [15, 161, as well as the basic solutions for a transformed equation used by 
Marshall and Watson for an ‘inner expansion’ around the singularity; the latter are 
given here in somewhat more detail than in [1-3]. Finally, we state the basic half-range 
orthogonality theorem derived in [l]. In section 3 we present some results for the 
Milne problem, in which a current flows from infinity towards the totally absorbing 
wall. In particular we compare the results obtained for small velocities by means of 
the inner expansion with results from a numerical simulation [17] and from variants 
of the moment method [8, 131. 

In section 4 we discuss the albedo problem, in which particles are injected into the 
system at the wall and are reabsorbed once they return to the wall. Explicit numerical 
results are shown for the case where the distribution of the velocity U of the injected 
particles has the form U‘ exp[-bu2/2]. Again, particular attention is paid to the velocity 
distribution of the returning particles for low velocities. In section 5 we discuss a 
variant of the Milne problem in which a fixed percentage of the particles is reflected 
specularly. This is known [ I l l  to cause a change in the type of singularity of the 
velocity distribution at the wall. We determine this singularity both by a direct applica- 
tion of the inner expansion and by an expansion in the number of reflections undergone 
by the particle; the latter method amounts to adding to a Milne problem a number of 
albedo problems with injected distributions of the type u”’(1n U)“‘. The results are 
again compared with approximate results obtained by a moment method. The final 
section contains some concluding remarks, mainly on the utility of various approaches 
to kinetic boundary layers for the Klein-Kramers equation. 

A J Kainz and U M Tirulaer 

2. Basic equations and methods of solution 

The Klein-Kramers equation for the distribution function P(u ,  x, f )  of the velocity U 

and the position x of an assembly of non-interacting Brownian panicles in an external 
potential V ( x )  = 2max reads 

where m is the mass of the particle, y its coefficient of friction and p = ( k T ) - ’  with 
T the temperature of the ambient medium. By using only one space and velocity 
component we have restricted ourselves to cases where the boundary conditions and 
the initial values do not depend on the ‘transverse’ space components, and where the 
distribution of transverse velocities is Maxwellian with inverse temperature p at all 
times; the latter condition may be relaxed somewhat [XI. In the reyainder of this paper 
we shall use units such that y = mp = 1. The Laplace transform P(u,  x, s) of P obeys 
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the equation 

[$d(s) ]  au, x, s) =- 1 P(u, x, 0) 
U 

where the operator d ( s )  is given by 

The operator d ( s )  is 'Hermitian' with respect to the indefinite scalar product 
tm 

(1; g)= I-, d u u  e x p [ f ~ ' + 2 a u I f  * ( u ) d u ) .  (2.4) 

The eigenvalues and eigenfunctions of d ( s )  are known [18]: 

d(s)+V(u) = - A d Z ( U )  u = * l  n = O , l ,  

= a + uq. q* = [ n + s + a 2 ] ' / 2  

(2 .5 )  

D . ( 2 q n - u ~ )  ~ e-="-"'/2 " 1 ' " - " * / 4  f. (U) =- e- m 
where D, (z )  denotes the parabolic cylinder function, related to the Hermite polynomial 

Dm(z) = 2~"'2e~'2i4Hn(z/&!). (2.6) 

When a and s do not both vanish, all A'," are distinct, and the +: obey the orthonor- 
mality relation 

(+:, +2= ~ J 8 ; ; q " W . , .  (2.7) 

H d y )  by 

The homogeneous solutions of (2.2) corresponding to (2.5) are 

~ ~ : ( u , x ) = + : ( u )  e x p [ - ( u + r r v ' i T L T ) x ] .  (2.8) 

For a, s<< 1, the $:(U, x)  with n # 0 change on a length scale of unity (in dimensional 
units: on the scale of the velocity persistence length I = ( y G ) - ' ) .  The solutions with 
n = 0 change much more slowly; they are solutions of Chapman-Enskog type [ 6 ] .  For 
s =0,  the $I: with u = s g n  u becomes the equilibrium distribution; the other one is 
constant in space, and one sees from (2.7) that it  is the only one of the JIT to carry a 
particle current. Fors =0, a + O  the two $ Z  coalesce into the (unnormalized) Maxwell 
distribution: 

l i m ~ ~ ( ~ , x ) = + ~ ( u ) = e x p [ - u ~ / 2 ] .  ,.LO (2.9) 

The operator d ( 0 )  acquires a Jordan associated function 

1 
+ b ( u ) = ~ i m - [ + o t ( u ) - + ~ ( u ) ] =  U exp[-u2/2] (2.10) 

"in 2a 

obeying 

(2.11) 
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The associated homogeneous solution of (2.2). normalized to unit negative current, is 

A J Kainz and U M Titulaer 

x - U  
=- exp[-u2/2]. (2.12) G 

The orthonormality relation (2.7) allows one to write any function g ( u )  (provided 
the norm obtained by replacing U in (2.4) by IuI is finite) as a unique linear combination 
of the +:(U) (supplemented by  .+;(U) for the case s = a =O). Replacing the +:(U) by 
the corresponding +:(U, x)  yields the unique homogeneous solution of (2.2) that 
assumes given boundary values g ( u ;  s)  at the boundary x = 0. However, in actual 
problems, only the g ( u ;  s) for particles leaving the source (at the wall) are given, 
whereas only the +:(U, x)  with U = sgn x are acceptable building blocks for physically 
meaningful solutions (at least in the absence of sources at infinity). To construct such 
a solution one would need a set of functions biorthogonal to the p:(u) on the half-range 
uu > 0. The existence of such a biorthogonal set was proved by Beak and Protopopescu 
[19]; their explicit construction was carried out by Marshal and Watson [I]. For 
convenience, we shall treat only the case U >  0, and formulate the theorem in terms 
of the functions fI(u), introduced in (2 .5) ,  rather than the +:(U), in order to remain 
closer in our notation to earlier work; the f: obey an orthonormality relation similar 
to (2.7), but with the weight function in (2.4) replaced by U exp[-u2/2]. Thus we look 
for a system of functions F:(u) ,  such that 

{C,f+) =a q A m  (2.13) 

with 

(f; g}= j o m d u u  exp[-u2/2lfYu)g(u). (2.14) 

Marshall and Watson derived the explicit expression 
m 1  

(2.15) 

(2.17) 

Via the q,,, the quantity Qn also depends on the parameter T =  s+a’, as is seen from 
(2.5). We shall therefore occasionally write it as Q,(T). The functions F : ( u )  vanish 
for u < O  [l]. 

From the results just mentioned it follows that there is a unique solution of the 
homogeneous version of (2.2) of the form (for x>O) 

obeying the boundary condition 

F&d, 0, s) = g ( u ;  s) foru>O (2.19) 
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The expansion coefficients are given by 

e, =[&q.]-'  ~ ~ ~ d u u e x p [ - u z , 2 ] F ~ ( u ) g ( u ) .  (2 .20)  

The solution bz is called the albedo solution of (2 .2)  for the boundary value g. Another 
important solution is the Milne solution bM(u, x). For U 2 0 it describes the case where 
a constant current flows towards the absorbing wall from infinity; it can be written as 

(2.21 a )  
m 

b d u , x )  = c '@, (u )+  z c,J/Xu, x)  
n = o  

with the boundary condition (for an absorbing wall) 

PM( U, 0)  = 0 for U > 0. (2 .21b)  

The constant c' in (2 .21a)  is chosen such that the total current is unity. For the case 
a =s=O, c '@i(u)  should be replaced by the function # i ( u , x )  defined in (2 .12) .  
One readily sees the connection between the two solutions: I', - e'@; is the albedo 
solution for g ( u ) = - c ' @ , ( u ) ,  (for (I =s=O, pM-J/; is the albedo solution with 
g( U )  = @A( U )  up to a constant). 

It had been known for some time that the Milne and albedo solutions are non- 
analytic at U = x = 0 [ l o ,  1 1 1 .  Since the @: are analytic functions, this implies that the 
sequences (2 .18)  and (2 .21a)  converge non-uniformly; the nature of the singularity 
follows from the asymptotic behaviour of the expansion coefficients c, for large n. An 
alternative way of studying the behaviour of p near the singular point is by a 
transformation of variables; following [ 1 1  we introduce 

'I = - u x - v 3  (2 .22)  

and write the function p(u, x, s) = b(5, q )  (we suppress the dependence of s) as 

&, 7) = E  5A.L(q) (2 .23)  

with the A still to be determined. The relations (2 .22)  imply the correspondences (for 
fixed 5) 

(2 .24)  

The requirement that b remain finite for x l 0  implies the growth condition (for A 2 0 )  

.L('7)= w71A) for )qI+m. (2 .25)  

In the new variables, ( 2 . 2 )  and (2.31, combined with (2 .23) ,  lead to the recursion 
relations 

q = o a  U = 0, x > 0 '7 + *000(xJO; * U  < 0) .  

- -r l f : -2+201f:- ,  - ( I  - s)fA-2 = LeAe,f, (2 .26)  

with 

(2 .27)  

The lowest term in the expansion (2 .23)  should have a s h  an eigenfunction of ZA with 
eigenvalue zero, denoted by xA(q) .  Using the relation between LfA and the differential 
operator appearing in the confluent hypergeometric equation [ Z O ] ,  realized by the 
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transformation i = 77'19, one sees that a solution obeying the constraint (2.25) is 

A J Kainz and U M Tifulaer 

ri1- c )  ric- I )  
U(a. c z )  = F (a, c, z ) +  z'-',F,(a- c +  I ,  2- c, 2)- (2.28) 

r ( a + c + l ) '  ' r i a )  
with ,F , (a ,  c, z )  the confluent hypergeometric function, and the prefactor in xh chosen 
For convenience. Asymptotically for large Iq] one has 

(2.29a) 

x ~ ( T J ) - ( - T J ) ~ ~ s ~ ~  for TJ + -m (2.296) 

with p,, a generalized hypergeometric function [20]. Once x,(v) is known, the solution 
(2.23) with (*xi as its first term can be constructed from (2.26) using the recursion 
relations for the confluent hypergeometric functions. 

In the albedo problem: the function @(U, 0, s) equals g ( u )  for U > 0, and hence the 
asymptotic behaviour of P(5, T J )  for T J +  -w is given: to each term in the Taylor series 
of g ( u )  corresponds a definite solution of the type just discussed. However, in view 
of (2.296), a solution starting with . $ 3 ' H t " 2 ~ 3 m + , , 2 ( ~ )  vanishes asymptotically for 
q +  -a (as can be shown by working through the recursion scheme (2.27)). A linear 
combination of such solutions, discussed in more detail in the next section, can always 
be added without modifying the 1) -t -w asymptotics; the coefficients in this linear 
combination have to be determined from other features of the solution, such as the 
values of the coefficients c, in the expansions (2.18) or (2.21a). This procedure will 
be carried out in the three subsequent sections for various stationary Milne and albedo 
problems; a simple non-stationary problem will be discussed elsewhere [21]. For 
stationary problems, the Laplace variable s should be taken equal to zero; hence we 
shall suppress the variable s from now on, and omit the carets on in the remainder 
of the paper. 

3. The Milne problem with absorbing wall  

The expansion (2.21) for the Milne problem is simplified greatly by the fact that the 
function &(U) is itself one of the orthonormal set of functions (2.7) (recall that the 
Milne problem reduces to the albedo problem for 4;). If one extends the integral 
(2.20) over the entire u-axis (which is allowed, since F: vanishes for U < O ) ,  and 
substitutes (2.15), only the term with U,,<> survives, and one obtains, for s=O, a > O ,  

where we used the expression (2.16) for U,,,,. The prefactor follows from the normal- 
ization condition 

c ' j - ,  duu+;(u)=c '  d u u  exp[-~u ' -2au-a2]=- l .  (3.2) I +a, 
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The corresponding density profile n N ( x )  can be calculated using the expression 
2 2  a -4.  

-- (3.3) 

which can be derived from the explicit expressions (2.5) using the representation 

(3.4) 
D"(z )  = (-1)" er'/4-e-=2/2 d" 

dr" 

and repeated integrations by part. 

becomes 
For large x, only the n = O  term in the sum in (3.1) survives, and the density profile 

. r ~ - 2 a : - 2 u r  i 

If we define the Milne length x M ( a )  by the relation 

1 %? I.-,=zi ri,(x = 0 )  (3.6) 

we obtain for this coefficient in the effective boundary condition to be imposed on the 
asymptotic density profile riM(x) 

1 
x M ( a ) = - [ 4 a 2 ~ ; ( a 2 )  201 e2"'-1] (3.7) 

where the function Qo(a2)  was defined in (2.17). For positive a the Taylor series of 
its logarithm is given by [ l]  

where [ ( r )  denotes the Riemann [-function. For small a one has 

1 
2a Qo( u 2 )  -- [ 1 -a[(  1/2) + B( a 2 ) ]  (3.9) 

from which one finds [I! hy suhrticu!ion in (3.7) 
~ ~ ( 0 )  = -[( 1/2) = 1.460 354 5088. .  . . (3.10) 

For the full density profile nM(x) one  finds using (3 .1)  and  (3.3) 

(4. +a)n- '  exp[-n/2- uq, -a'] 
4 a Q n Q u n  a J a )  = 

( 3 . 1 1 a )  

(3.11b) 

As mentioned in the preceding section, the behaviour for small x depends on the 
asymptotic behaviour of the a , , ( a )  for large n, which can be  determined using the 
asymptotic expression 

(3.12) 
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which is obtained from (3.1 1 b )  by using Stirling's fOrmuh and the asymptotic expansion 
for large n [ 11 

A I Kainz and U M Tifulaer 

(3.13) 

I n  (3.12) and (3.13) the function 6(z, a )  is the generalized 6-function, defined as (the 
analytic continuation of) 

m 

i ( z , a ) =  ( k + a ) - ' .  (3.14) 

Substitution of (3.13) into ( 3 . 1 1 ~ )  and Taylor expansion of the q. around & finally 
yields the non-analytic part of n M ( x )  for small x as a linear combination of expressions 
of the type 

k = O  

I n  general, the second contribution is analytic, hence unimportant for the singularity 
structure. However, for a = 1 + k/2, the first term and a term in the sum both diverge 
( i (x )  has a pole at x = + l ) ;  they compensate, but leave a logarithmic residue [see 
section 41. For small x we obtain for the density profile nM(x) 

(3.16) 

where nM(O; a) contains non-asymptotic contributions. 
In our discussion of the singular structure of the full solution we shall need the 

O C ~ ~ V I U U T  01 r M ~ v ,  XI IUT srnaii x; iiiis is deteimiiied siiiiilaiiy io [3.16), using ihe 
asymptotic expression for the parabolic cylinder function D.(x)  near its point of 
inflection [20]: 

L.L...:-~~- P n I n  .., P.. .-.-S. ~~ 

(3.17) 

If we substitute this into the original expression (3.1), and note that q. becomes of 
order n'/*, whereas Q. approaches a constant in view of (3.13), we see that the dominant 
non-analytic contribution to P,(O, x)  involves the function f ( x ;  13/12), and obtain 

(3.18) 

I  ne vanishing of the constant term is best shown by means of the inner expansion. 
For later reference we note that, in contrast to (3.16), the first correction is also 
non-analytic, hence derivable from the asymptotics. 

Before turning to results obtained by means of the inner expansion, we mention 
the special form the above results take for the case of a vanishing external potential 
in (2.1), a =0,  and report a few results obtained by numerical evaluation of our 
expressions. From (3.1) one finds for the full solution in the special case a = 0, applying 
the expression (2.12) for the current-carrying solution and the expression (3.9) for 
Qo(a2) at small (I, 

(3.19) 
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For the density profile at small x one similarly obtains 

(3.20) 

As in (3.16), nM(0) contains non-asymptotic information; a numerical evaluation of 
(3.18), in which the first Q. are calculated explicitly and higher ones are replaced by 
an  asymptotic value from (3.13), yields 

nM(0) = 0.936 1145 . . . . (3.21) 

By similar numerical methods we determined the complete density profiles for 
various a. In figure 1 we give the deviation of the complete profile from the Chapman- 
Enskog part (3.5). normalized by the latter, i.e. the density depletion in the boundary 
layer. We see that this function decreases only slightly for not too small a (note that 
a = 0.1 corresponds to a drift velocity in the stationary state equal to 20% of the thermal 
velocity, as is clear from (2.5) and (2.6)). For high a, where the drift velocity is very 
large, the boundary layer becomes much less pronounced. 

a = O . 5  

.... 0-0.1 

- o=o.o 
I I  

-0.44 . I , I 
0.0 0.3 0.6 0.9 1.2 1.5 

Figure 1. The boundary layer part of the density profile. n,(x)-d,(x), with dM(.xJ the 
asymptotic part of the solution given by (3.5), divided by E,(X), for the Milne problem 
in a constant external field. The curves correspond to several values of the field parameter 
a, where 2a is the stationary drift velocity i n  units of the thermal velocity (mpJ-"'. The 
lengthscaleisthevelocitypersistencelength I =  r ~ ' ( m L 7 ~ l i 2 ,  with y the frictioncoefficient. 

To determine the velocity distribution PM(u, 0) at the wall for small U we use the 
inner expansion method, described at the end of section 2. We shall employ special 
solutions of type (2.23), in which the function f A ( q )  multiplying the lowest power of 
f equals the ,yn introduced in (2.25); higher terms in the expansion (2.23) are determined 
from the recursion (2.26) in such a way that no eigenfunctions of -%'A+k with eigenvalue 
zero are added in order f*". The solution so constructed is denoted by E,((, 7). It 
then follows from the boundary condition (2.21b) (the vanishing of PN( U, 0) for U > 0) 
and from the asymptotics (2.246) that only EA with A = 3m + I /2  can occur. We may 
therefore write 

- 

m 

P , ( f ,  T ) =  dk(a)%k+l,Af2 7). (3.22) 
x = o  
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The function PM(u, 0) is obtained by letting 7 go to infinity in  such a way that 61 = 
stays constant. For general a the result is 

PM(-u, 0)= do(a)J;;  [ 1 +  au +&(2a2-  1)u2]+B(u7'*). 

A J Kainz and U M Titulaer 

(3.23) 

The coefficient d , ( a )  is determined by calculating PM(O, x)  = PM(O, 5'). For this quan- 
tity we obtain from (3.22) and the definition of EL 

PM(O, x)  = d,(a)X,/2(0)x"6+O(xS'h) (3.24) 

and a comparison with (3.18) gives 

(3.25) 

For the special case a = 0 we carried the calculations somewhat further and obtained 

PM(-u, 0) = d,u''2(1 -&u2+%u4)+ d , ~ ' / ~ ( l  - $ u 2 ) +  O ' ( U ' ~ / ~ )  (a =0). (3.26) 

For PM(O, x) we obtain 

P M ( 0 ,  X) = d o [ ~ ~ , 2 ( 0 ) ~ " " + 3 / 5 ~ ; / ~ ( 0 ) ~ ~ ' ~ ]  + d , x 7 / 2 ( 0 ) ~ " ' +  O ( X " ' ~ )  (a =0) 
(3.27) 

and a comparison with (3.18), also carried two orders further, yields 

d , = 2 J S ( 2 n ) - 3 ' 4 = 0 . 8 7 2 X 8 2 . . .  

d ,  =&A (2a)-'/45(-f) = -0.020 7 3 8 . .  . . 

(3.2Xa) 

(3.28b) 

The distributon function (3.26) is shown in figure 2, together with results from a 
numerical simulation [I71 and from two versions of the moment method [ X ,  131. The 
small-u asymptotic result (3.26) agrees well with the simulation till close to (u I  = 1 (the 
deviations at small U are systematic errors in the simulation [17]). For large 1u/ both 
moment methods agree well with the simulation; they also show good convergence 
with the number of moments in that region (see e.g. figure 1 of [ X I ) .  The two-stream 
moment method [13], a generalization of a procedure first applied to the present 
problem by Razi Naqvi et a/ [22], shows remarkably good results down to very low 
1111, where the singularity is replaced by a finite jump. 

I 
-1.5 -1.0 -0.5 0.0 0.5 1 .o  

Figure 2. The velocity distribution P(u.0) at the wall for the Miine problem without 
external force, as calculated by the exact asymptotic expansion near U = 0, by two YariantS 
of the moment method [a, 131, and by numerical simulation 1171. 
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4. Stationary albedo problems 

In this section we shall consider various stationary albedo problems for the field free 
case, i.e. we consider the problem (2.18) with s = u  = O .  If we assume the function 
g ( u )  = P(u, 0) for U > 0 to have an expansion of the form 

g ( u ) = u "  ghu' (4.1) 
h = O  

then the albedo solution P,(u, x) in the variables 5 and '1 must have the form 

with the functions EA defined in the text preceding (3.22) and 

(4.3) 

The first contributions in (4.2) ensure the right asymptotics for '1 + TcO (determined 
by the behaviour of P(u, 0) for U > 0)); the second sequence of contributions vanishes 
for x = 0, U > 0; therefore the d,(g) cannot be calculated from the inner expansion. As 
in the Milne solution, they must be determined by an asymptotic analysis of the 
expansion coefficients c, in the expansion (2.18) of P, in terms of the J'(u). Before 
discussing the determination of the d, , (g) ,  we first discuss the solution P,(u,O) for 
small negative U. From the explicit expressions (2.29) and the results in the preceding 
section one has (for a # k + f )  

+ d , ( g ) u l / * (  1 -&U')+ dl (g)u712+ D( U''', u a + 3 )  (4.4) 

with dk defined in (4.3). Note that for a <+ the dominant singularity for negative U is 
of type U"*. For a> ;  it is of type U'". For a +  k + i  one of the 4, vanishes; as we 
shall see, this will be compensated by a similar divergence in the d ; ( g )  in front of the 
same power of U. 

The determination of the asymptotic behaviour of the c,, which must be calculated 
to determine the d , ( g ) ,  is considerably more complicated than in the Milne case. For 
definiteness, we shall discuss the special case 

g ( u ) = u "  exp[-bu2/2]. (4.5) 

This general form includes, for a = 0, the important case of thermal emission with a 
temperature not necessarily equal to the background temperature. Moreover, the class 
of functions (4.5) includes representatives of all the types of singular behaviour 
encountered in (4.41, but is sufficiently simple to allow at least some of the steps in 
the calculations to be performed analytically. With g ( u )  given by (4.51, the c, for n > O  
are given by (see (2.20) and (2.15)) 

with 
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The second term in (4 .6 )  represents the m = O  term in (2.15), with the n&O limit taken 
using ( 3 . 9 )  and ( 2 . 5 ) .  The I,,, can be evaluated asymptotically for large n using the 
techniques explained in [lo]. The result is 

(4 .8a)  

(4.8b) 
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I,_- ( 2 ~ ) ” ~ M l A i ,  a +Z/m-S/ ’2-0’6  [l+O(m-”’)] 

I , ,  - Z ~ . ( ~ ~ ) ~ / ~ M I A ~ ,  a + ~ i m - ~ / ~ ~ - “ ’ ~  [I +o(m-’”)] 

where MIA;, XI  denotes the Mellin transform of the Airy function 

Asymptotic evaluation of c,  therefore requires asymptotic evaluation of expressions 
of the type 

This expression can be evaluated using the techniques explained in appendix 3 of [l]. 
For non-integer values of 2x the result is 

For the special case a = i, one needs R,,(;) .  At x = $ the first term and the j = 1 term 
in the sum become singular; the singularity is removable and the result is 

m 

~ , , ( ; ) - - n - ’ ( c ~ + ~ n  n)+ Z‘(-~)’n-(j+’)~* 1 [ ( 3 - i ) / 2 1  (4.12) 

where cE is Euler’s constant and the prime indicates that the term j = 1 should be 
omitted. Using the above results one finds for the c, asymptotic expansions of the type 

;=o 

1 c , = ~ , n - l + ~ , n - 3 / 2 + ~ 2 n - l l / 1 2 - ~ / 6 + + n  -15112-a/6 + 0 ( ~ - 2 ,  n-19/12-o/6 
In 

f o r a # k + f  (4.13) 

c, = w o n - ’ +  w , n - ” 2 + w 2 n - ’  In n + w , n P / 3 + O ( n - 5 / ’ )  for a = f .  (4.14) 

The coefficients Clo and C l , ,  or wo and w , ,  contain the non-asymptotic values of the 
I,,-, and must therefore be evaluated numerically. For C12 and Cl ,  we obtain 

In particular, C12 vanishes for a = 3 j  or a = 3 j  + 1, as is clear from (4.3), and C l ,  for 
a = 3 j + 1  or a = 3 j + 2 ;  as we saw before, Cl2 diverges for a =;. 

An analysis as in the previous section relates Clo and C l ,  to the as yet unknown 
coefficients in P,, given in (4.2): 

d o =  -4& ( 2 ~ ) ’ ’ ~ f l ~  d ,  = -$A (2~r)‘/~n,. (4.16) 

The values for do as a function of a for several values of b are given in figure 3.  For 
a = 0, b = 1 one finds d ,  = 0, as it should be, since in that case E‘,( U, x)  = d ~ ~ ( u ) ,  as one 
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I - - -  b-1.41 

...... b-1.0 E - b-0.5 

I 
0.6 0.8 1 .o 

Figure 3. The coefficient d,(o, b )  of the U'/' contribution to the velocity distribution at the 
wall at mal l  negalive velocities for the albedo problem with injected distribution p ( u )  = 
U'' exp[-bu'j2], as a function of the parameter L? for several values of  b. 

sees easily by  substitution. The poles in d. for a =; are also clearly visible in the figure. 
For a =;, w2 and w3 can be calculated in closed form. From (4.14) we obtain instead 
of (4.4) the distribution 

-3 27 
2rr 40 ?r 

p. ( -u ,  0) =-A In U +  &A+- us'* In u + o ( u ' / ~ )  (4.17) 

where & contains the non-singular contributions from the coefficients of 
for a = $ .  

in (4.4) 

The density profile n , ( x )  can be calculated using the methods explained for the 
RX:l -e r~l..t:A- :- the --ena,I:-m ea,+:-- Thn ne-e-nl f-- -mnl l  w i s  
1.llll'L D Y l U L L U l l  U. LL.L y L c c b " " ' &  U C C L I Y I I .  I t B C  & C . L C L L L  b"y"c""'Y" L Y ,  DL..'..l n 1s 

foro< a < 2 2a non-integer (4.18) 

where n,(O) contains non-asymptotic contributions. For a =0, Cl2 vanishes, as is clear 
from (4.i5); and we obtain 

(4.19) 

where the logarithmic term is caused by compensating singularities in (3.15). The 
quantity Cl,, is negative for b < 1 (injected particles hotter than the background) and 
positive thereafter. Results for the full profiles n, (x)  for a = O  and several values of b 
!!herme! in;ectioE at te-pe:attt:e: di:e:ent fro= the bzckground temperature) are 
given in figure 4. As was seen already in [SI, the density at infinity increases with 
increasing temperature of the injected particles (the injection become more 'effective' 
with increasing average injection velocity). For the special value a = t  the density 
profile also obtains logarithmic contributions: 

n, (x )  = n,(O) - 4 ( 2 r r ' ) ' / 4 ~ , ~ + 2 ( 2 ~ ) " 4 C l , x  In x+O(x) 

In conclusion, we have seen that the leading singularities in P, at U = x = 0 depend 
on the exponent a. For O <  a <;, P8(u, 0 )  at small U is of order lul" for both positive 
and negative U, and the density profile has a term x " + " ' ~ ~  as the leading sigularity. 
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2.8 j 'ri  
___-- 0.6 ___--- 

___---- 0.8 ---; .. . . . . . . . . .  . . .  ...... 
................................... 1 .o 

1 2  
1 . 4  

.-..... 
~ 

2.04 , I 

0.0 0.2 0.4 0.6 0.8 1 .o 
Figure 4. The density profile for the albedo problem with injected velocity distribution 
&?(U) = exp[-bui/21 for several values of b. For h = 1 (injection with a Maxwellian at the 
background temperature) the equilibrium distribution with density J Z  results. 

For a > f ,  the leading singularity in P,(-lul,O) is of type a, and that in n , ( x )  is of 
type A. At the crossover point a = f ,  logarithmic corrections to both singularities 
appear. For a i 0  the leading singularity disappears; P,(u, 0) remains continuous at 
U = 0, and the density profile retains only a weak singularity of type x In x. 

5. The Milne problem for partially reflecting walls 

When the wall reflects some of the particles impinging upon it, the boundary condition 
at x = 0 takes the form 

uP(u,O) = du'lu'lB.(ulu')P(u', 0) foru>O (5.1) 

where %(U lu ' )  denotes the probability that a particle arriving at the wall with velocity 
U' is reflected with velocity U. For a partially reflecting wall, the integral of B. over U 
is less then unity. The Marshall-Watson procedure for Milne problems with boundary 
conditions of this types becomes very complicated; it involves inverting a matrix formed 
by matrix elements of 91 between the fR(u). Therefore, it will in practice always be 
preferable to solve such problems by moment methods, and use the methods discussed 
in this paper only for analysis of the singularity. As an example we shall consider in 
this section the case of partial specular reflection with a velocity-independent reflection 
coefficient: 

P,(u, 0 )  = rP,(-u, 0) for U > 0. (5.2) 
If we construct the inner expansion (2.23) for P,, the starting powers A should obey 
the relation, seen from the asymptotic behaviour (2.29), 

L 

r = 2 $ ,  =2sin(71/6-An/3) (5.3) 
with the solutions 

1 3 . -  
A k  =6k+---sin '(i-12) 

2 7 1  
7 3 . -  

pk = 6k +-+- sin '(rI2). 
2 7 1  

(5.4) 
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If we denote A. and pLo by A and p, the result obtained by solving the first few terms 
of the recursions (2.26) can be written as 

A+4 u 4  ( (A+2)(5A+3))] 
U>+- I +  p,(-u,O)=d,(r)u I--  

40( A + 3)  ‘( 4(A+2) 4(A+2)  

The result for positive U follows from (5.2). For rJ.0 the functions d d r )  and d , ( r )  
should approach the values do and d, for the pure Milne problem, given in (3.28). For 
r +  1 the distribution P,(-u, 0) should approach to a multiple of the Maxwell distribu- 
tion. From the normalization to unit current one finds 

lim (l-r)t‘,(-u, r )=&(u)=exp[-u2/2]  for U > 0. ( 5 . 6 )  

In this limit, A and p approach 0 and 4, respectively, and a comparison with (5.5) yields 

r - l  

l i m d o ( r ) ( l - r ) = l  lim d , ( r ) ( l -  r) = -&. (5.7) 
r -  I I -  I 

From (3.28) and (5.7) we see that d ,  is much smaller than d(, both for r J 0  and r* 1; 
in addition, the term with d , ( r )  in (5.5) only becomes relevant for values of I u I  for 
which the asymptotic expansion becomes irrelevant anyhow. We therefore compared 
the results of the two-stream moment method [13] with the do-term in  ( 5 . 5 ) ,  using 
d,(r )  as an adjustable parameter. The results for r=0.25 and r = 0 . 8  are shown in 
figure 5. Clearly, there is a considerable range of U-values for which the agreement is 
very good. Near U = 0, the finite jump imposed by the two-stream method can provide 
only a rough approximation to the actual singularity; in particular the zero at U = 0 is 
not reproduced. The values for d d r )  that give the best fit agree to within numerical 
accuracy (three significant figures) with the expression 

do( r )=do(0)+r / ( l  -I). ( 5 . 8 )  
The numerical accuracy of the two-stream method did not suffice to provide an estimate 
for d,(r). 

Before discussing a way of determining the d , ( r ) ,  at least in  principle, we mention 
that the asymptotic behaviour of the expansion coefficients c,,(r) in the analogue of 
(2.21) is given by 

+a,(r)n~”/”-”‘”O+ . . .  (5.9a) , 1 / , 2 - A ( r , / 6  cnir)  - ao(r)n- 
with 

(5.9b) 

(5.9c) 

The corresponding asymptotic behaviour for the density profile is 

Thus, the exponent decreases from f to as r varies from 0 to I ,  with the coefficient 
going to zero in  the latter limit. Note, however, that the term n,(O) approaches 
&/( l - r )  for r +  1, whereas the second term (and the further corrections) remain 
finite in that limit. 
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0.04 I 
- 2  - 1  0 1 2 

-2  - 1  0 1 2 

Figure 5. (a1 The velocity distribution at the wall for the force-free Milne problem with 
partial specular reflection, as calculated from the exact asymptotic expansion near u=O 
and from the two-stream moment method, for the value r = 0.25 of the reflection coefficient. 
( b )  The same quantities for reflection coefficient r = 0.8. 

At least in principle, the d , ( r )  can be calculated by writing P,(u, x) as a power 
series in the reflection coefficient r[23]: 

m 

P,(u, x)  = 1 r A P k ' ( u ,  x). (5.11) 

The separate terms represent particles that have been reflected precisely k times by 
the wall. They can therefore be interpreted as Milne (k =0) and albedo solutions: 

(5.12) 

k = O  

p'0' = pM P"' = P, with g ( u )  = P"-"(-u, 0). 

The same decomposition should also hold for the leading singularities in P,(-u, 0) 
m 

d,(r)u*"'= 1 rkf"'(u) (5.13) 
k = O  

where the f'*' are obtained by combining the Taylor series 
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where the conjecture (5.8) would correspond to 

do,,, = 1 f o r k > l  

and 

(5.15) 

with 

(5.17) 

(Note that only terms with even n -m are non-zero.) Thus, we find for the asymptotic 
behaviour of P'"(-U, 0) the expression 

Since P") is the solution of an albedo problem with P'*-''(-u, 0) as the input function, 
the successive Pck' can be calculated using the methods expounded in section 4. To 
calculate the asymptotic behaviour, we need to study albedo problems of the type 

g(u)=J;[In u ] ' " [ ~ + B ( u ' ) ] .  (5.19) 

A comparison with the derivations in section 4 shows that the only new element is 
that the Mellin transforms (4.9) should he replaced by expressions of the type 

I [ r ;  m]=~omdtt ' - ' [ ln  f]'"Ai(t) (5.20) 

which can be obtained from 1,- in (4.8) by taking the mth derivative with respect to 
L. In this way, all terms in (5.18) with the exception of the m = n = 0  term involving 
the new coefficient can be determined exactly, and we find agreementwith (5.18) 
(see [I41 for full details). The coefficients do.,, for k > 0 ,  like the coefficient do in (4.17), 
contain non-asymptotic information as well, and depend on the global behaviour of 

(-U, 0). To calculate it, one must evaluate slowly converging asymptotic series; 
determining do,( to an accuracy better than a few per cent by this method requires 
excessive computational effort. For do,, we find the value 0.98 with an estimated 
accuracy of a few per cent, compatible with the estimate (5.8) inspired by the moment 
method. Since the logarithmic corrections do  not influence the global behaviour very 
much, it appears reasonable that all do,k with k>O should have roughly the same 
value. Analogous results were found for the corresponding coefficient &(bj  for the 
albedo problem for the function 

pi*-?, 

g ( u )  =&exp[-bu2/2]. 

It remains close to unity for b up to about 1.4, but decreases somewhat for higher b. 
From (3.26) we see that the effective value of b for the calculation of do,, has the value 
6 ;  hence a value near unity for do,,  is not surprising. Moreover, the limiting law (5.7) 
implies that the d, , ,  should approach unity for k + m .  However, the nature of the 
calculation and the behaviour of the corresponding quantity &(b)  for large b make 
it somewhat unlikely that the estimate (5.8) should be exactly true. 
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6. Concluding remarks 

In this paper we have explored the exact solution found by Marshall and Watson for 
boundary layer problems of the Klein-Kramers equation. We found a surprisingly rich 
variety of singularity structures in the various special problems treated in sections 3-5, 
and we saw that the techniques developed in [1-3] provide powerful means to determine 
these structures. Since these techniques involve extensive use of asymptotic expansions 
it is comforting to have some consistency checks available, such as the agreement 
beiween the two diiierent approaches to the Mihe  probiem with partiai specular 
reflection, set forth in section 5 .  The reliance on asymptotic expansions, as well as the 
slow convergence of several other series encountered in our analysis, make it very 
difficult, however, to obtain very accurate numerical results for non-asymptotic quan- 
tities, except in some favourable cases, such as the classical Milne problem, where the 
Milne length in the absence of an external field is given exactly in closed form. Other 
non-asymptotic quantities, in particular density profiles and other moments of the 
distribution functions, are in general obtained more efficiently by approximate methods, 
i.e. by methods that do  not give the solution in closed form, but as the limit of a 
sequence of approximations. Such sequences often converge more rapidly than the 
series encountered in the present paper, and they are easier to program for numerical 
computation. Examples are the moment methods described in [8, 13, 221, or variants 
of these methods to be found in earlier work quoted in these papers. Some other 
approximate methods are described in a recent paper by Coron [9];  related work was 
reviewed recently by Sone [24]. However, since neither the mathematical justification 
for the use of the moment methods, nor the assignment of confidence limits to the 
results obtained by them is eniirely straightforward, t h r  methods developed in [1-3], 
and further worked out in the present paper, provide a welcome check on these more 
‘practical’ methods as well. 

I nough we have focused our artention in this paper on ihe technicai maihemaiicdi 
problems involved in solving the Klein-Kramers equation, we wish to point out that 
this equation has important applications, for example in analysing the growth of liquid 
droplets from a gas mixture, in particular when the vapour molecules are much heavier 
than the molecules of the carrier gas [25-271. Other applications occur in the theory 
of diffusion-controlled chemical reactions [ 28 ] .  Most applications contain additional 
complications and involve the Klein-Kramers equation in spherical, rather than planar 
geometry, but the exact techniques discussed here were used, for example, to obtain 
a systematic expansion of the spherical boundary layer problem in terms of the inverse 
radius of the sphere around which the kinetic boundary layer is formed [29]. Moreover, 
most calculational techniques applied in these more complicated problems are best 
tested first for the planar case, for which by now such a wealth of exact and additional 
reliable information has become available. 

A J Kainz and U M Titulaer 
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